A Laplacian based image filtering using switching noise detector

نویسندگان

  • Ali Ranjbaran
  • Anwar Hasni Abu Hassan
  • Mahboobe Jafarpour
  • Bahar Ranjbaran
چکیده

This paper presents a Laplacian-based image filtering method. Using a local noise estimator function in an energy functional minimizing scheme we show that Laplacian that has been known as an edge detection function can be used for noise removal applications. The algorithm can be implemented on a 3x3 window and easily tuned by number of iterations. Image denoising is simplified to the reduction of the pixels value with their related Laplacian value weighted by local noise estimator. The only parameter which controls smoothness is the number of iterations. Noise reduction quality of the introduced method is evaluated and compared with some classic algorithms like Wiener and Total Variation based filters for Gaussian noise. And also the method compared with the state-of-the-art method BM3D for some images. The algorithm appears to be easy, fast and comparable with many classic denoising algorithms for Gaussian noise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random-valued Impulse Noise Reduction in Color Image by Using Switching Vector Median Filter with MST-based Noise Detector

This paper describes the noise reduction performance of a switching vector median filter with a random-valued impulse noise detector for color images. As a random-valued impulse noise detector, a minimum spanning tree (MST)-based method is employed. In the switching vector median filter, the impulse noise detector is employed before filtering, and the detection result is used to judge whether a...

متن کامل

Implementation of a 3-D Switching Median Filtering Scheme with an Adaptive LUM-Based Noise Detector

We present a Field Programmable Logic Devices (FPLDs) based implementation of a scalable filter architecture capable of detecting and removing impulsive noise in image sequences. The adaptive filter architecture is built using switching spatiotemporal filtering scheme and robust Lower-Upper-Middle (LUM) based noise detector. It uses highly optimized bit-serial pipelined implementation in Altera...

متن کامل

Geological noise removal in geophysical magnetic survey to detect unexploded ordnance based on image filtering

This paper describes the application of three straightforward image-based filtering methods to remove the geological noise effect which masks unexploded ordnances (UXOs) magnetic signals in geophysical surveys. Three image filters comprising of mean, median and Wiener are used to enhance the location of probable UXOs when they are embedded in a dominant background geological noise. The study ar...

متن کامل

An Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising

MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...

متن کامل

Random-valued Impulse Noise Reduction by MST-based Method for Color Image

In this paper, noise reduction performance of a switching vector median filter with a random-valued impulse noise detector for color images is evaluated. As a random-valued impulse noise detector, a method utilizing the minimum spanning tree (MST) is employed. In the switching vector median filter, the impulse noise detector is employed before filtering, and the detection result is used to cont...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015